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1 Introduction

“You can see the robots everywhere but in the productivity statistics” could be the modern
version of Solow’s productivity paradox. Since the 1980’s, the price of robots fell very signifi-
cantly, the number of robots per thousands of industry workers has been rising very fast (Ace-
moglu and Restrepo (2022)), and yet no major productivity improvement has been seen in TFP or
GDP growth statistics, while it should intuitively result in large productivity gains. What if other
changes in the environment of firms partly hindered the adoption of robots in the U.S. economy?
What if automation was actually fostered by other factors?

We build a model of endogenous automation with heterogeneous firms, endogenous business
formation and tradability, and labor reallocation. The model extends Ghironi and Melitz (2005) to
include segmented labor markets and endogenous automation, and allows for a comprehensive
account of the effects of automation on the labor market, business dynamism, productivity and
trade. As automation is endogenous, it does not only depend on the relative price of robots as
in many papers but is more generally affected by changes in the environment of firms, namely
the marginal production cost, and the relative amounts of labor types used to produce, and both
margins are affected by a variety of shocks.

We feed the model with a collection of shocks aimed at capturing different trends of the
U.S. economy since the mid-80’s: a fall in the price of robots, a rise in firms’ markups (De
Loecker, Eeckhout, and Unger (2020)), a rise in entry costs to account for the observed decline
in business dynamism (Akcigit and Ates (2023)), a fall in trade costs accounting for the greater
observed trade openness of the U.S. economy, and a rise in labor productivity. Calibrated to
match the data, these shocks allow for counterfactual analyzes that single out the pure effects
of the observed fall in the price of robots. More generally, the procedure and model allow for
a decomposition of the respective contributions of the various shocks to GDP growth, business
dynamism, productivity, or trade openness by shutting or tuning them down one by one.

In the model, when robots become cheaper, they are used as perfect substitutes to labor in
routine tasks and complement non-routine tasks. This gives rise to (i) a displacement effect that
lowers the demand for routine labor and raises the demand for non-routine labor and a rise
in the non-routine wage premium, (ii) a productivity effect that lowers the production cost and
results in more output, and (iii) a labor supply effect driven by the non-routine wage premium,
as workers reallocate towards the non-routine sector, which further amplifies the displacement
effect. In addition, automation fosters the creation of new firms and boosts business dynamism,
which further deepens automation and magnifies its effects on output and labor markets. Our
model also predicts large aggregate production and wage gains from automation but very un-
evenly distributed. As in Moll, Rachel, and Restrepo (2022), routine workers loose by all possible
measures – lower employment, lower wages and lower consumption – while non-routine work-
ers gain. As the number of non-routine workers rises, the aggregate gains are larger than the
average of routine and non-routine per capita welfare gains.
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Looking at counterfactual scenarios allows us to highlight important results. The first one is
that, at least in our model, the fraction of automated tasks depends non-linearly on the relative
price of robots. We find that smaller declines in the price of robots would not have produced
the automation process observed in the data. Actually, below a certain threshold, the decline
in robots price does not produce automation at all. The reason is that, automation being en-
dogenous and depending on labor supply – and not only labor demand – and labor reallocation
responding to the wage premium, households need to experience or expect a substantial enough
rise in the non-routine wage premium to reallocate. The reallocation process further deepens
the extent of automated tasks. In our baseline experiment, the relative price of robots falls by 2
percents annually. Whenever the decline becomes less than 1.5 percent annually, we find that the
fraction of automated tasks remains constant or even declines.

A second key finding is that the potential effects and benefits from the fall in the relative
price of robots could be much larger than put forth by other papers, but that other negative
shocks, such as the rise in markups or the decline in business dynamism have been offsetting
these potential gains. Indeed, absent the rise in markups or entry costs, we find that the fraction
of automated tasks would have risen to 60 or 70 percents, instead of 36 percents in the baseline
simulation. This would have led to much stronger wage growth for non-routine workers, a
more massive reallocation of labor to the non-routine sector and much larger aggregate welfare
gains. Of course, part of the reported welfare gains relate to the fact that both shocks – pushing
up markups and entry costs – generate welfare losses on their own, so removing them brings
welfare gains. But a substantial fraction of the the reported welfare gains stems from a stronger
automation process. Singling out the marginal effects of the automation induced by removing
these negative shocks, we find that the corresponding aggregate welfare gains could have reached
30 to 35 percents of permanent consumption with constant markups and business dynamism.

By the same token, we find that positive shocks increasing labor productivity and reducing
trade costs helped foster the automation process. Had labor productivity or trade costs remained
constant, the fraction of automated tasks would have been around 30 percents instead of 36
percents. Labor reallocation and the wage gap would have been less important, and so the wel-
fare consequences. While the absence of changes in trade costs has relatively little additional
consequences except for the degree of trade openness, the absence of productivity gains would
have also significantly moderated wage growth for both types of workers, generating large wel-
fare losses that would have partly compensated the welfare gains experienced by non-routine
workers and deepened the welfare losses suffered by routine workers.

Our paper thus suggests that, for a given path of the relative price of robots, the resulting
degree of automation can vary more than substantially depending on how other shocks shape
labor markets, aggregate productivity or business dynamism. When automation is endogenous,
shocks with negative (positive) effects on output not only impose welfare costs (gains) on their
own, but also slow down (accelerate) the process of automation, and dampen (amplify) the
associated welfare and labor-market reallocation effects.
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Literature. Recent contributions by Acemoglu and Restrepo (2020) and Acemoglu and Re-
strepo (2022) document the upward trend in robots’ adoption and automation over the last 30
years around the world. Building on a task-model of automation, they also show theoretically
and empirically that automation gives rises to a displacement effect, lowering the demand for
routine labor and increasing the demand for non-routine labor, and to a positive productivity
effect. Moll, Rachel, and Restrepo (2022) offer a quantification of automation modeled as a rise
in the share of capital in production. As a source of biased technical change, automation has also
been considered a potentially important factor of job polarization in advanced economies (see
Goos, Manning, and Salomons (2009)). As such, it has been advocated to contribute to slow or
jobless recoveries (see Jaimovich and Siu (2020) and Graetz and Michaels (2017) for challenging
views). In addition, numerous questions regarding the inefficient nature of automation and its
potential taxation have been raised and partly answered (see Guerreiro, Rebelo, and Teles (2021),
Beraja and Zorzi (2022)).

However, most contributions on automation like Acemoglu and Restrepo (2020) or Eden and
Gaggl (2018) focus on labor demand and production effects, but abstract from labor supply ef-
fects, labor-market reallocations or general equilibrium effects. A notable exception is Guerreiro,
Rebelo, and Teles (2021), who build a closed-economy general equilibrium model of automation
to analyze the optimal taxation of robots. However, we consider a more general CES produc-
tion function that fits empirical evidence in a more compelling way, as it generates a substantial
increase in the non-routine labor share, which a Cobb-Douglas production function can not do.
Further, our paper considers the effect of automation in an environment with endogenous entry,
which is, to the best of our knowledge, new. As such, the above papers may miss some of the ef-
fects of automation running through the relative supply of skills or through changes in business
dynamism.

Our second main addition to the literature is the open-economy dimension. The latter re-
ceived relatively little attention, to the exception of Artuc, Bastos, and Rijkers (2018), who in-
vestigate the trade and wage effects of automation. Artuc, Bastos, and Rijkers (2018) consider a
Ricardian model of trade but disregard firms’ entry in production and export markets, i.e. effects
at the extensive margin. According to our results, both features – firm creation and entry in
export markets – matter to fully assess the macroeconomic effects of automation, especially in
light of the above-mentioned general equilibrium linkages through which automation proceeds.
Mandelman and Zlate (2022) is more closely related to our work. They propose a model of off-
shoring, immigration, automation and trade in tasks to disentangle the respective contributions
of these factors in explaining the polarization of U.S. labor markets.1 We adopt a somewhat sim-
ilar approach in combining various shocks to account for the observed effects of automation and
grasp its welfare implications. However, rising markups and declining business dynamism ap-
pear to be salient trends of the U.S. economy that are not taken into account by Mandelman and
Zlate (2022), while we highlight their critical importance in shaping the effects of automation. In

1The paper adopts many of the assumptions featured in Mandelman (2016).
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addition, Mandelman and Zlate (2022) do not really discuss how shocks other than automation
– immigration, offshoring – affect the extent of automation while this question is central in our
paper.

Last, our paper also draws on the literature dealing with rising markups and declining busi-
ness dynamism. De Loecker, Eeckhout, and Unger (2020) document a very large increase in
market concentration and markups in the U.S. over the last 40 years. Although their finding
is being discussed extensively in subsequent papers and potentially explained by changed in
cost-price pass-through (Conlon et al. (2023)), by the rise of the service sector (Marto (2022)) or
challenged on empirical grounds (Foster, Haltiwanger, and Tuttle (2022)), it is still considered a
key ingredient to account for the dynamics of the U.S. economy, along with factors weighing on
business dynamism (De Loecker, Eeckhout, and Mongey (2021)). The decline in U.S. business
dynamism has been documented in details by Decker et al. (2016) and, according to Akcigit and
Ates (2021), rationalized by interacting changes in market concentration and innovation, leading
to decreasing knowledge diffusion (see also Akcigit and Ates (2023)). Our goal is not to explain
the observed rise in markups or the decline in business dynamism but to highlight how these
– arguably related – trends affect the extent of automation. Our findings suggest that these
interactions are critical.

The paper is structured as follows. Section 2 presents the model. Section 3 calibrates the
model using U.S. data and assesses the fit of the model. Section 4 investigates the relation
between the relative price of robots and automation, and shows that the latter can be non-linear.
Section 5 looks at counterfactual scenarios by shutting down other shocks. It shows that the
fraction of automated tasks – automation – varies substantially: shutting down shocks with
negative effects on output (markups, entry costs) raises automation while shutting down shocks
with positive effects on output (labor productivity, trade costs) lowers automation. This Section
also isolates the marginal effects of the degree of automation induced by other shocks to quantify
its marginal effects on wage growth, labor-market reallocations and welfare. Section 6 concludes.

2 Model

We build a two-country open-economy model with endogenous entry and export participa-
tion, endogenous automation and heterogeneous labor. In each country there are two families
of workers supplying differentiated labor: routine workers and non-routine workers. Routine
workers are hand-to-mouth while non-routine workers have access to financial markets. The size
of each family is endogenous and affected by the wage premium.

2.1 Families

We consider two countries of equal size, Home and Foreign, and denote Foreign variables
with an asterisk. The Home economy represents the U.S. while the Foreign economy represents
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a pool of advanced economies. We focus on the Home economy (U.S.) and assume perfect
symmetry in the structure and parameter values.

In the Home economy lives a family of non-routine workers (h) of size (1 + λt) and a family
of routine workers (u) of size (1 − λt), in which workers are respectively paid a real wage wh

t and
wu

t . Variable λt reflects structural decisions affecting the skill composition of the labor force and
the relative size of families such as training or immigration, and is assumed to respond to the
non-routine wage premium:

λt = ϖ

(
wh

t
wu

t
− wh

wu

)
, (1)

Each family chooses consumption to maximize its lifetime per-capita welfare:

W i
t = Et

{
∞

∑
s=t

βs−t log
(

ci
s

)}
, i = {h, u}, β < 1. (2)

The family of non-routine workers owns firms and uses Home bonds to smooth consumption,
so that welfare maximization is subject to the following budget constraint:

bt + (1 + λt) ch
t = rt−1bt−1 + wh

t χh (1 + λt) + Πt, (3)

where χh is an exogenous measure of hours worked, bt is the real value of dollar-denominated
bonds, returning rt between period t and t + 1 and Πt represents the firms’ total profits. Maxi-
mizing (2) subject to the budget constraint implies

Et {βt,t+1rt} = 1

where βt,t+1 =
(1+λt+1)uc(ch

t+1)
(1+λt)uc(ch

t )
is a stochastic discount factor.2 The family of routine workers does

not have access to financial markets and the per-capita level of consumption of family members
is given by:

cu
t = wu

t χu. (4)

For each family, the aggregate consumption basket is made of Home varieties ω ∈ Ω and
Foreign varieties ω∗ ∈ Ω where Ω denotes the space of possible varieties:

ci
t =

(
(nt)

ς−1
θt

∫
ω∈Ω

ci
dt (ω)

θt−1
θt dω + (n∗

xt)
ς−1
θt

∫
ω∗∈Ω

ci
xt (ω

∗)
θt−1

θt dω∗
) θt

θt−1

, i = {h, u}. (5)

Here θt > 1 is the elasticity of substitution between goods, nt and n∗
xt respectively denote

the number of Home and imported varieties available for consumption in the Home country.
Following Bénassy (1996), ς captures the love for variety of consumers. Preferences boil down to

2While decisions to switch family type are not explicitly modeled the consequences are internalized through the
subjective discount factor.
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CES preferences for ς = 1, ς < 1 (ς > 1) indicating a lower (higher) marginal welfare benefit from
additional varieties. Defining ρdt (ω) and ρ∗xt (ω

∗) as the relative prices of each type of varieties,
the demands for Home and imported goods are:

ci
dt (ω) = ρdt (ω)−θt nς−1

t ci
t, and ci

xt (ω
∗) = ρ∗xt (ω

∗)−θt n∗ς−1
xt ci

t. (6)

One difference in the problems solved by the two families in the Foreign economy is that the
Foreign family of non-routine workers has access to two types of bonds, the dollar-denominated
bond and a local bond. In addition, changes in the amount of dollar-denominated bonds held by
Foreign non-routine workers require the payment of an adjustment cost:3

acb∗
t = (ϕb/2)

(
q−1

t b∗t − q−1
t−1b∗t−1

)2
, (7)

that depends on deviations of external assets from their past value, where qt is the consumption-
based real exchange rate from the perspective of the Home economy. The resulting Euler equa-
tions imply:

Et
{

β∗
t,t+1r∗t

}
= 1, (8)

Et

{
β∗

t,t+1

(
rt − r∗t

qt+1Γt

qt

)}
= 0, (9)

where Γt = 1 + ϕb

(
q−1

t b∗t − q−1
t−1b∗t−1

)
and β∗

t,t+1 is the counterpart of βt,t+1 for Foreign non-
routine workers. The first-one is a standard Euler equation on local bonds, and the second is a
modified real interest rate parity condition that determines the dynamics of the real exchange
rate.

2.2 Firms

Robot producers. Robots are produced in quantity xt under perfect competition. The pro-
duction cost (and thus the market price of robots) is ϕt, exogenous and identical across tasks.
Profits from producing robots are null.

Intermediate goods. In the intermediate sector, a representative firm uses a quantity of
non-routine labor ℓh

t and a combination of routine labor ℓu
t and robots xt to produce yt units of

intermediate goods. Among automatable tasks, only a time-varying fraction mt ∈ [0, 1] of au-
tomatable tasks are effectively automated and performed by robots, and the remaining fraction
1 − mt is performed by routine workers. As shown by Acemoglu and Restrepo (2022), the key
underlying assumption is that routine labor and robots are strong substitutes to perform automated

3This assumption is purely technical and pins down the long-run level of net foreign assets as explained by
Schmitt-Grohé and Uribe (2003).
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tasks.4 Guerreiro, Rebelo, and Teles (2021) build on this idea for automatable tasks and assume
a Cobb-Douglas combination of automatable and non-automatable tasks. We adopt a more gen-
eral CES representation, allowing both types of tasks to be complement, which results in rising
demand for non-routine labor and a rising non-routine labor share in case of shocks fostering
automation.5 Our production function of intermediate goods is thus:

yt =
(

α
(

ψtξℓ
h
t

)ν
+ (1 − α)Aν

t

) 1
ν

, (10)

where ξ is the relative productivity of non-routine workers, ψt is the productivity of labor, ν

determines the substitutability of routine and non-routine tasks, and At is a bundle of routine
tasks:

At =

[∫ mt

0
(xit)

µ di +
∫ 1

mt

(ψtℓ
u
it)

µ di
] 1

µ

, (11)

where µ determines the elasticity of substitution among automatable tasks. Let φt denote the
relative price at which the intermediate good is sold to final goods producers, the representative
intermediate firm maximizes its profits:

Πyt = φtyt − ϕt

∫ mt

0
xitdi − wu

t

∫ 1

mt

ℓu
itdi − wh

t ℓ
h
t . (12)

The first-order condition with respect to non-routine labor is independent from the type of
task completed and yields:

α

(
yt

ψtξℓh
t

)1−ν

=
wh

t
ψtξφt

. (13)

This equation shows that the demand for non-routine labor depend positively on the produc-
tion of intermediate goods yt and negatively on the non-routine real wage relative to the price of
the intermediate good. The first-order conditions for routine labor and robots depend on whether
task i is automated or not:

(1 − α)

(
At

xit

)1−µ ( yt

At

)1−ν

=
ϕt

φt
, for i ∈ [0, mt] , (14)

(1 − α)

(
At

ψtℓu
it

)1−µ ( yt

At

)1−ν

=
wu

t
ψt φt

, for i ∈ (mt, 1] . (15)

We assume µ → 1, implying perfect substitutability among routine automatable tasks. As
discussed in Guerreiro, Rebelo, and Teles (2021), it follows that anything else than wu

t /ψt = ϕt

either yields full automation (mt = m = 1 if ϕt < wu
t /ψt) or null automation (mt = m = 0

if ϕt > wu
t /ψt). If mt is to be interior, a necessary condition is thus wu

t /ψt = ϕt. Finally,

4Acemoglu and Restrepo (2022) show clearly that this type of productive transformation is different from any
alternative way of modeling automation (including skill-biased or capital-biased technical change).

5A Cobb-Douglas production function keeps the non-routine labor share constant, which does not fit the trend
observed in the past decades.
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since the production technology has constant returns to scale, Πyt = 0 and φt, the real price of
the intermediate good, is also the real marginal production cost. An equilibrium with interior
automation thus implies xit = ψtℓu

jt for any i ∈ [0, mt] and for any j ∈ (mt, 1]. As a consequence,
the degree of automation writes:

mt =
xt

xt + ψtℓu
t

, (16)

where xt = mtxit is the aggregate stock of robots. Accordingly, using xit =
xt
mt

=
ψtℓu

t
1−mt

= At, the
aggregate production function writes:

yt = ψt

(
α
(

ξℓh
t

)ν
+ (1 − α)

(
ℓu

t
1 − mt

)ν) 1
ν

, (17)

and the first-order condition on robots implies:

mt = 1 −
(

1
α

(
ϕt

(1 − α) φt

) ν
1−ν

− 1 − α

α

) 1
ν
ℓu

t

ξℓh
t

, with 0 ≤ mt ≤ 1. (18)

Equation (18) is key. It shows that the dynamics of automation critically depends on the
relative price of robots ϕt. As the latter goes down, a first direct effect stems from the direct
substitution (displacement) of routine workers in the production process, pushing mt up. Fur-
ther, as ϕt falls, so does the routine wage wu

t /ψt in equilibrium – unless ψt, the productivity of
labor, falls more than ϕt, which is not plausible. Since the demand for robots jumps, whether the
demand for non-routine labor increases or not depends on whether automatable tasks and non-
automatable tasks are substitutes or complements. In the case of complementarity, the demand
for non-routine labor rises, which raises the non-routine wage premium. A positive response
of the non-routine wage drives the marginal production cost φt up, which amplifies automation
endogenously. This second effect is completed by a third effect stemming from general equi-
librium interactions. Since households reallocate among sectors depending on the non-routine
wage premium, the resulting effects on ℓu

t /
(
ξℓh

t
)

act as reinforcing or dampening automation. If
reallocation leads to more labor in the non-routine sector, i.e. if ℓu

t /
(
ξℓh

t
)

falls, then automation
is reinforced. This equation thus shows that modeling automation as an endogenous process de-
livers much richer dynamics than just assuming exogenous robot capital deepening, as the latter
also depends on general equilibrium effects. As a consequence, in our framework, any shock
affecting the marginal production cost or the relative amounts of labor types used in production
has implications for endogenous automation.

Final goods. In the final goods sector, a continuum of heterogeneous firms differentiate in-
termediate goods into varieties before selling them to consumers at home and abroad. The sector
allows for endogenous entry and endogenous tradability. Over the entire space of potential vari-
eties, only a subset will actually be created and commercialized. Each firm produces one variety.
Firms have specific random productivity draws z, which remain fixed once firms have been cre-
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ated. Entry implies a once-and-for-all sunk cost fet, paid in units of intermediate goods. At each
period t, there are two types of firms: nt firms that are already productive at the beginning of
the period and ne,t firms that are newly created – but non-productive yet. At the end of period t,
a fraction δ ∈ [0, 1] of existing firms is affected by an exogenous exit shock. The total number of
varieties/firms thus evolves according to:

nt = (1 − δ) (nt−1 + net−1) . (19)

Among the firms created, only the most productive address the export market. Entry in
the export market is subject to the repeated payment of a fixed cost fx, also paid in units of
intermediate goods, and incurs the payment of iceberg melting costs τt.6 Firm-specific produc-
tivity z has a Pareto distribution with lower bound zmin and shape parameter ε > θt − 1. The
probability density function of z is g (z) = εzε

min/zε+1 and the cumulative density function is
G (z) = 1− (zmin/z)ε. Over the total number of potential firms, the number of existing firms will
be determined by a free-entry condition. In addition, out of the total number of firms addressing
the local market, the number of exporting firms nxt will be those that are productive enough to
cover the additional fixed export costs and trade costs. Their number is:

nxt = (1 − G (zxt)) nt = (zmin/zxt)
ε nt, (20)

where zxt is the individual productivity of the cut-off exporting plant. Firm z produces a quantity
yt (z) of variety z using ymt (z) of the intermediate good and the following production function:

yt (z) = zymt (z) . (21)

As such, the firm-specific marginal production cost is φt (z) = φt/z. Let κt (z) denote the
total current real profits of a firm with productivity z. Total current profits comprise domestic
and export profits, κdt (z) and κxt (z), respectively defined as:

κdt (z) = (ρdt (z)− φt/z) ydt (z) , and κxt (z) = (qtρxt (z)− (1 + τt) φt/z) yxt (z)− fx φt, (22)

where ρdt (z) is the relative price of good z when sold in the Home market and ρxt (z) its
price expressed in terms of the Foreign currency when exported, with qt the real exchange
rate. Variables ydt (z) and yxt (z) respectively denote the Home and Foreign total demand of
domestic varieties, such that firm z produces yt (z) = ydt (z) + yxt (z) and therefore demands
ymt (z) = yt (z) /z = (ydt (z) + yxt (z)) /z units of intermediate goods. The optimal pricing con-
ditions are derived subject to the goods demand functions and optimal prices imply:

ρdt (z) =
θt

θt − 1
φt

z
, and ρxt (z) = (1 + τt)

θt

θt − 1
φt

qtz
, (23)

6Trade costs are exogenous but time-varying. Out of a quantity y produced and shipped, only y/ (1 + τt) actually
arrives. Firms need to produce (1 + τt) y to sell y.
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Entry occurs one period before production starts and the productivity draw of the last enter-
ing firm remains fixed until the corresponding firm exits. Firms do not know their productivity
draw prior entry. Hence, the entry condition equates the current entry cost, expressed in units of
the intermediate good, to the total (domestic and export) discounted expected profits (starting in
t + 1) made by the average incumbent. The corresponding entry condition writes:

Et

{
∞

∑
s=t+1

(βt,s (1 − δ))s−t κ̃s

}
= fet φt. (24)

where κ̃t denotes average profits. Expressing the condition recursively, we get:

Et {βt,t+1 (1 − δ) (κ̃t+1 + fet φt+1)} = fet φt. (25)

This equation shows the determinants of firms’ entry. Given the definition of profits, en-
try is high when the current marginal cost is low, and when domestic and export markets are
large. The entry condition also shows that entry is high when current entry costs are low or ex-
pected discounted entry costs higher than current entry costs. Among incumbents, only the most
productive firms profitably enter the export market given that exporting requires the repeated
payment of iceberg costs. The export productivity cut-off is thus κxt (zxt) = 0 or, after using the
optimal pricing and demand equations:

zxt =
1 + τt

θt − 1

(
θt φt

qt

) θt
θt−1
(

fx

nς−1
xt Φ∗

t

) 1
θt−1

, (26)

where Φ∗
t denotes the aggregate Foreign demand. As in the case of firms’ entry, this equation

sheds light on the determinants of entry in the export market: low trade costs, a low marginal
cost, a low relative price captured by a high value of qt, low export costs, a large Foreign market
and strong love for variety. The Foreign economy is characterized by symmetric conditions that
are therefore not detailed.

2.3 Aggregation and Data Consistency

We define the average productivity of Home firms selling on the domestic market as z̃ =

∇zmin where ∇ = (ε/ (ε − (θt − 1)))
1

θt−1 and the average productivity of Home firms addressing
both markets as z̃xt = ▽zxt (see Ghironi and Melitz (2005) for a discussion and Melitz (2003) for
proofs; see Hamano (2022) for comparable results with love for variety).

Average prices. Defining the average price of a Home good as ρ̃dt = ρdt (z̃) and the average
price of Home exported good as ρ̃xt = ρxt (z̃xt), we obtain real average prices:

ρ̃dt =
θt

θt − 1
φt

▽zmin
, and ρ̃xt = (1 + τt)

θt

θt − 1
φt

qt ▽ zxt
, (27)
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while conditions for Foreign goods are symmetrically defined and thus not reported.

Average profits and variety effect. Using the profit and pricing equations, average profits are
given by:

κ̃dt =
1
θt

ρ̃1−θt
dt nς−1

t Φt, and κ̃xt =
(θt − 1)

ε − (θt − 1)
fxt φt, (28)

where Φt = (1 + λt) ch
t + (1 − λt) cu

t + ϕtxt, with xt =
∫ mt

0 xitdi. These equations can be used to
obtain the dynamics of average total profits:

κ̃t = κ̃dt + (nxt/nt)κ̃xt. (29)

Based on the expression of the CPI, we uncover the following variety effect:

nς
t ρ̃1−θt

dt + n∗ς
xt ρ̃∗1−θt

xt = 1. (30)

Aggregate productivity in final goods. Endogenous changes in the number of producers
and exporters affect aggregate productivity in the final goods sector. As more (less) varieties are
created and/or more (less) varieties are exported, the productivity of the marginal producer (ex-
porter) varies, even for a fixed and given distribution of productivity draws. Whether aggregate
productivity in the sector is computed based on the density function g(z) or based on weights re-
flecting relative output shares, as in Melitz (2003), entry and exit on domestic and export markets
affect the aggregate productivity level through (i) changes in the average productivity level due
to the marginal productivity of entering firms, and (ii) the reallocation of market shares among
firms. We follow Melitz (2003) and define two measures of aggregate productivity, one for all
domestic final goods producers and one for final goods producers that export:

Zt = n
ς

θt−1
t ▽, and Zxt = n

ς
θt−1
xt ▽ zxt. (31)

These equations show that aggregate productivity may increase either because the average
productivity level rises, or because of a scale effect by which there are more producers on the
markets. For the aggregate productivity of all domestic final goods producers, only the scale
effect is present and any rise in the total number of firms will raise aggregate productivity. But
as shown also in the above equations, the productivity gains are scaled by the love-for-variety
parameter ς. Any mechanism that lowers the marginal production cost φt or favors lower entry
costs will have positive effects on aggregate productivity through the entry of new firms. The
strength of the effect though depends on the substitutability of varieties and on love for variety.

Market clearing. On the labor markets for routine and non-routine workers respectively, the
equilibrium is:

ℓh
t = χh (1 + λt) , and ℓu

t = χu (1 − λt) . (32)

11



On goods markets, the clearing condition for Home intermediate goods reads:

yt = ρ̃−θt
dt ▽−1 nς

t Φt + (1 + τt) ρ̃−θt
xt (▽zxt)

−1 nς
xtΦ

∗
t + net fet + nxt fxt, (33)

where Φ∗
t = (1 + λ∗

t ) ch∗
t + (1 − λ∗

t ) cu∗
t + acb∗

t + ϕ∗
t x∗t and the market clearing condition for Home

final goods is:
yc

t = nς
t ρ̃1−θt

dt Φt + qtn
ς
xtρ̃

1−θt
xt Φ∗

t . (34)

On the market for dollar-denominated bonds, the international clearing condition gives:

qtbt + b∗t = 0, (35)

while the Foreign local bond is assumed to be in zero net supply. The dynamics of Home net
foreign assets are obtained by aggregating all budget constraints and combining with market
clearing conditions:

bt − rtbt−1 = qtn
ς
xtρ̃

1−θt
xt Φ∗

t − n∗ς
xt ρ̃∗1−θt

xt Φt. (36)

Data consistency. In principle, as explained by Ghironi and Melitz (2005), our model variables
would have to be deflated by a price index capturing the aggregate variety effect. The presence
of endogenous varieties with love for variety implies that welfare-based price indices may vary
even though individual product prices remain fixed. However, given that we consider a long
period of time and focus on structural change, we consider that statistical offices have enough
time to update price indices to take account of new varieties. We thus focus on welfare-based
macroeconomic aggregates and abstract from deflating key variables.

Shocks. We consider five different driving forces capturing the following trends of the U.S.
economy.

• First, we consider a persistent decline in the relative price of robots ϕt. In most contribu-
tions analyzing automation, this shock is the single driver of the increased use of robots in
production. In our set-up however, because automation results from endogenous choices
from intermediate goods producers, the relative price of robots interacts with other factors
determining the marginal production cost of intermediate goods, and relative amounts of
labor. Rising markups, higher entry costs, trade costs or labor productivity all contribute
to the endogenous adoption of robots.

• We also include a persistent decline in the elasticity of substitution between goods θt, im-
plying rising markups as documented by De Loecker, Eeckhout, and Unger (2020). This
shock captures the observed upward trend in market concentration. In our set-up with
endogenous entry, markups play a dual role with ambiguous net effects. On the one hand,
as in most macro models, they distort the divide of value-added into profits and factor
shares in favor of profits, lower net factor payments and thus lead to less production. On
the other hand, these effects on the intensive margin can be compensated by changes in the
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extensive margin of goods production, since higher profits imply higher expected gains for
firms just below the entry cut-off, and higher markups might stimulate entry and business
dynamism. Hence, to account for the observed decline in business dynamism, this shock
is combined with a persistent rise in entry costs. Of course changes in markups also have
implications for aggregate productivity through the extensive margin, as explained above
and shown by Equation (31).

• A persistent rise in the entry cost fet is introduced to account for the observed decline in
business dynamism discussed by Akcigit and Ates (2023). While this shock is reduced-
form, it aims at capturing the dynamics of the total number of producers which, as shown
again by Equation (31), has implications for aggregate productivity and thus aggregate
output. What’s more, the decline in business dynamism has implications for the aggregate
demand of both types of labor, and thus for the extent of automation.

• In our open-economy model, aggregate productivity and output are not only affected by
domestic conditions but also by the dynamics of exports and the number of exported goods.
Equation (31) shows it, and we also want to take into account the rise in trade openness of
the U.S. economy over the sample, from 18% in the late 80’s to 30% in the early 2010’s. We
thus consider a persistent fall in trade costs τt, because it also has implications for aggregate
productivity, output and automation.

• Last, we consider a persistent rise in labor productivity ψt. All the above shocks, when com-
bined, might result in positive or negative aggregate output dynamics. We thus introduce
the possibility of a steady rise in labor productivity to account for any potential additional
rise in aggregate GDP. Introducing this shock will also help disentangle the different pro-
ductivity effects at work: those pertaining to the increased use of robots, those arising from
changes in existing and traded varieties of goods, and those driven by increasing labor
productivity.

Contrary to the literature, since firm’s entry and automation are both endogenous, all these
shocks will have implications for the number of existing and traded varieties as well as for the
degree of automation, and thus effects on output, productivity and trade openness. We build on
existing evidence for the fall in the relative price of robots ϕt, and for rising markups θt/(θt − 1).
The three other shocks are set based on simulation methods to match the observed dynamics of
various aggregate, as described in details below.

Solution method. Given the size of shocks and adjustments, non-linearities are likely to be
significant. We thus rule out linearization methods and solve the model using an extended path
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algorithm, which is fully non-linear (see Fair and Taylor (1983)).7

3 Parameter values and data fit

We use various data sources to calibrate our model, all pertaining to the U.S. economy. A
subset of parameters is calibrated using empirical evidence about their value. The remaining
subset of parameters is adjusted to fit time-series evidence.

3.1 Calibrated parameters

Both countries have similar size and are symmetric in the initial equilibrium, which implies
q = 1 and b = 0. All shocks will be symmetric (i.e. world-wide) in the baseline experiment. The
model is annual, and the discount factor is β = 0.96, implying a 4% steady-state interest rate.
Our baseline calibration is meant to capture the situation of the U.S. in the late 1980’s, when the
routine and non-routine labor shares were roughly equal. In 1987, Eden and Gaggl (2018) report
a share of ICT capital in output of 2.95%, which implies assuming m0 = m∗

0 = 0.06 in our model,
and adjusting the initial relative price of robots ϕ0 = ϕ∗

0 accordingly. Matching the 1987 routine
and non-routine shares of income (0.481 and 0.519 respectively) leads us to impose χh = 0.27 and
χu = 0.33.

In the intermediate goods sector, the productivity of labor is initialized to ψ0 = 1. Further,
we follow Guerreiro, Rebelo, and Teles (2021), and impose α = 0.48. The relative productivity
parameter ξ is adjusted to match the 1987 non-routine wage premium wh

0/wu
0 = 1.33, implying

ξ = 1.2983. As explained below, ν is set along with other parameters to match the dynamics key
ratios and variables. In the final goods sector, without loss of generality, we impose n = 1 which
pins down the value of fe0, the initial value of the entry cost. We also impose the initial share
of exporting firms in the steady state at nx0/n0 = 0.2, and adjust the export cost fx accordingly.
Based on U.S. Census Bureau Business Dynamics Statistics, the annual death rate of firms is
set to δ = 0.125 to match an observed entry rate in 1987 of ne0/n0 = 0.143. Regarding the
initial elasticity of substitution between varieties θ0, we follow Ghironi and Melitz (2005) and set
θ0 = 3.8, which delivers a 1.35 markup, to be compared with the 1.32 estimate reported by De
Loecker, Eeckhout, and Unger (2020) for the U.S. in 1987.

For the calibration of the trade sector, we adjust the iceberg cost parameter to τ0 = 2.2 to
reproduce the 18% U.S. openness ratio in 1987, measured as total trade divided by GDP using
World Bank data. This number might seem high but is not far from the estimates reported by
Anderson and van Wincoop (2004), and aligns well with the U.S. economy being one of the

7Imagine that the model is in its non-stochastic steady state and a one-time shock hits in period 1. After the
unexpected shock hits, the algorithm computes the convergence path to the steady state using a fully non-linear
Newton-type algorithm. Using the implied equilibrium values for period 2, suppose that a new unexpected shock
hits in period 2, and that the same procedure is used to obtain the equilibrium values for period 3. The full equilibrium
path can thus be computed as a succession of unexpected shocks by solving a sequence of non-linear convergence
paths towards the non-stochastic steady state.
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most ’closed’ economies world-wide. Our calibration implies that final goods’ exporters are 57%
more productive than non-exporters, and that final goods’ domestic prices are 97% higher than
export prices. Finally, the international bond adjustment cost parameter is ϕb = 0.0007 following
Schmitt-Grohé and Uribe (2003).

3.2 Adjusted parameters and data fit

On top of shocks’ parameters, we are left with a subset of free parameters, which do not
have clear data counterpart and/or are unobservable: the labor reallocation parameter ϖ, the
elasticity of substitution between factors ν/(ν − 1), the Pareto parameter ε, and the parameter
governing households’ love for variety ς. We proceed as follows. We feed the model with a
series of repeated and persistent shocks from 1987 to 2013 on {ϕt, θt, fet, τt, ψt}, that respectively
lower the unit cost of robots, raise markups, raise entry costs, lower trade costs and raise labor
productivity. The size and persistence of shocks on {ϕt, θt} are first set to match the observed
fall in the depreciation-adjusted relative price of ICT capital and the observed the rise in firm’s
markup.

Then the size and persistence of remaining shocks { fet, τt, ψt} and parameters {ϖ, ν, ε, ς} are
set to match the following empirical trends: (i) the fall in the share of routine labor in output,
(ii) the rise in non-routine employment relative to routine employment, (iii) the rise in the non-
routine wage premium, (iv) the decline in business dynamism, measured by the fall in the entry
rate (net/nt), (v) the rise in trade openness and (vi) the rise in GDP per capita.8

We find ϖ = 0.5361, ν = −69.14, ε = 3.5456 and ς = 0.1862. The value labor reallocation cost
implies that a 10 percentage point increase in the wage premium with respect to its initial value
(from 1.33 to 1.43) generates a 5.3 percentage point increase in relative non-routine labor, i.e. from
1 to 1.053. The production parameter ν implies a strong complementarity between routine and
non-routine tasks, as the elasticity of substitution is 1/ (1 − ν) = 0.0143. In a framework where
robots and routine labor are perfect substitutes, this complementarity is needed to account for a
substantial rise in the non-routine labor share, consistent with what is observed – although not
targeted by our procedure – in the data. The value of ε = 3.5456 aligns well with usual values
found in the literature, and implies a bit less dispersion in firm-level productivity than Ghironi
and Melitz (2005), who use a very close measure of ε = 3.4. Last, the parameter governing the
strength of love for variety implies that households value varieties – roughly four times – less
than in the typical CES case since ς = 0.1862 < 1, in line with previous findings (see Lewis and
Poilly (2012) for instance).

The shock parameters imply a lot of persistence ρϕ = 0.9789, ρθ = 0.9854, ρ fe = 0.9949,

8The share of routine labor, the relative non-routine employment, the non-routine wage premium and the relative
price of ICT capital are taken from Eden and Gaggl (2018). The relative price of robots is adjusted for the observed
rise in ICT capital depreciation based on a user cost approach using the depreciation rate provided by Eden and
Gaggl (2018). Markups are taken from De Loecker, Eeckhout, and Unger (2020), the entry rate comes from the Census
Bureau Business Dynamics Statistics, GDP per capita and trade openness are taken from World Bank data.
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ρψ = 0.9477 and ρτ = 0.995, consistent with the idea that most shocks are close-to-permanent
and that reported changes are structural. The average fall in the relative price of robot capital
is 2%, which happens to match exactly the annual rate imposed by Guerreiro, Rebelo, and Teles
(2021). As reported in Figure 1, between 1987 and 2013, our simulations further imply that
markups rise from 1.3571 (θ0 = 3.8) to 1.5243 (θT = 2.9075), as in the data; entry costs are almost
multiplied by four – a 300% increase – which helps capture the observed decline in business
dynamism; trade costs fall by roughly 50% to match trade openness; and labor productivity
increases by 26%, an average 0.86% annual growth rate. The calibration is summarized in Table
1 and Figure 1 reports our baseline simulation.

Table 1: Parameter values.

Parameter Target / Source Value
Discount factor Annual interest rate of 4% β = 0.96
Labor reallocation cost Optimized ϖ = 0.5361
Non-routine labor Non-routine labor share χh = 0.27
Routine labor Routine labor share χu = 0.33
Non-routine labor rel. pdty Wage premium wh

0/wu
0 = 1.33 (data) ξ = 1.2983

Initial cost of robots Share of ICT capital (m0 = m∗
0 = 0.06) ϕ adjusted

Non-routine labor share Guerreiro, Rebelo, and Teles (2021) α = 0.48
Factor elast. of subs. Optimized 1/(1 − ν) = 0.0143
Initial entry cost Normalization (n0 = 1) fe0 adjusted
Export cost Normalization (nx0/n0 = 0.2) fx adjusted
Exogenous exit rate ne0/n0 = 0.143 (U.S. Census Bureau) δ = 0.125
Varieties elast. of subs. Ghironi and Melitz (2005) θ0 = 3.8
Pareto curvature Optimized ε = 3.5456
Love for variety Optimized ς = 0.1862
Initial trade costs Trade/GDP ratio of 18% τ0 = 2.2
Portfolio adjustment cost Schmitt-Grohé and Uribe (2003) ϕb = 0.0007
Persistence of ϕt Optimized ρϕ = 0.9789
Persistence of θt Optimized ρθ = 0.9854
Persistence of fet Optimized ρ fe = 0.9949
Persistence of ψt Optimized ρψ = 0.9477
Persistence of τt Optimized ρτ = 0.995
Shock size – robots price Optimized ξϕt = −0.0167
Shock size – markups Optimized ξθt = −0.0123
Shock size – entry cost Optimized ξ fet = 0.0550
Shock size – labor prod. Optimized ξψt = 0.0160
Shock size – trade costs Optimized ξτt = −0.0302

In Figure 1, the two first rows are our targets and their dynamics are all well matched. The
third row and the two first panels of the last row report the dynamics of exogenous processes,
showing the large drop in the relative price of robots, the rise in markups, the rise in entry costs,
the rise in labor productivity and the fall in trade costs. Notice that trade shocks are adjusted to
match openness but the resulting dynamics matches independent empirical evidence about trade
costs. Finally, the last panel of the last row reports the dynamics of the non-routine labor share,
which is not targeted by our procedure. While the model does not entirely capture its rise, our
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Figure 1: Data vs. targeted time series.
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simulation features a 6 percentage point increase.9

4 The relative price of robots and automation

Let us now dig further in the effects of the fall in the relative price of robots. As already
mentioned, our model of endogenous automation implies that the degree of automation is not
only affected by shocks to the relative price of robots. However, this price remains a key driver of
automation, and a closer look at its effects illuminates the associated transmission mechanisms,
as reported in Figure 2. The Figure reports the baseline simulation, a simulation where the fall
in the relative price of robots is 50% less than the baseline, and a simulation with a smaller drop
in robots price and with constant labor productivity.

Figure 2: Dynamics – Baseline vs slower automation.
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Note: Circled: baseline, Solid: smaller fall in robots price, Dashed: smaller fall in robots price and constant labor
productivity. “Relative welfare” denotes welfare gains relative to the baseline case.

Let us start with the baseline case. The marginal effects of a fall in the relative price of
robots can be singled out by looking at the difference between the baseline and the case of slow
automation. In Figure 2, the fall in the relative price of robots is mirrored by an equivalent fall
in the wage of routine workers.10 Routine wage growth is negative and implies an equivalent

9A Cobb-Douglas production function subjected to automation shocks would simply reallocate the income shares
between the automated and non-automated routine tasks, that is, between robot capital and routine labor, and leave
the non-routine labor share constant and equal to its steady-state level.

10Actually the wage received by routine workers is only driven by two exogenous factors namely the relative price
of robots ϕt and labor productivity ψt, since, as shown in the model wr

t /ψt = ϕt in equilibrium.
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negative consumption growth rate per capita for routine workers, who are hand to mouth as
shown by Equation (4). Equation (18) also shows that a fall in ϕt – combined with other shocks
– fosters automation and leads the fraction of routine tasks performed by robots to surge from
6% in 1987 to roughly 35%. Given the strong complementarity between automatable and non-
automatable tasks, the more intensive use of robots is also met with a more intensive use of non-
routine labor. Non-routine employment rises by more than 45% relative to routine employment
in the baseline case. This joint movement in the labor force, along with a constant use of labor
– the total number of workers is fixed – is what Acemoglu and Restrepo (2020) coin as the
displacement effect. As a result of the increase in non-routine labor demand, non-routine workers
experience strong wage growth, and thus strong consumption growth. Welfare increases for non-
routine workers and decreases for routine workers. The aggregate welfare effects combine the
effects stemming from per capita consumption growth with a composition effect – the increasing
number of non-routine workers relative to routine workers.

Beyond the displacement effect, the fall in the relative price of robots also lowers the pro-
duction cost of intermediate goods φt, which then results in positive output growth. In addition
to the direct increase in production, the fall in the relative price of robots generates indirect
productivity gains at the extensive margin by inducing more firms to enter the market. First,
households’ income jumps, driven by the increasing number of non-routine workers and by their
rising wage. Further, the demand for robots increases. Both movements are reflected in the large
increase in output. Since aggregate demand expands, expected profits rise and new firms are
created, which further fuels aggregate demand, and even more final goods producers enter. Our
baseline simulation suggests that the entry rate is higher in this case than with a more modest
fall in robots price, resulting in more firms. Regarding the open-economy dimension, the fall in
the relative price of robots does not appear to play a key role for trade openness or the export
threshold per se. But as shown below, the open-economy dimension – the fact that trade costs
fall as well – plays a key role for the transmission of the robots price shock, and for the resulting
degree of automation it produces.

Inspecting the case of a smaller fall in the relative price of robots further confirms the above
results about its marginal effects. Reduced robots price dynamics dampen the wage-growth
rate of non-routine workers and make the wage growth rate of routine workers less negative.
Compared to the baseline case, this case produces welfare losses for non-routine workers and
welfare gains for routine workers. A smaller fall in the relative price of robots is also associated
with a lower growth rate of output and a less dynamic entry rate, so less new firms. But this case
also add a dimension to the question at hand, which is non-linearity. Clearly, when the relative
price does not fall enough, the endogenous degree of automation mt falls instead of rising as
in the baseline case. One could think that it stems from the fall in the relative price of robots
not compensating the rise in labor productivity, but actually the case of a smaller price decrease
with constant labor productivity shows that it is not the case: the degree of automation remains
constant and displacement effects are absent in both alternative cases. So our model predicts that
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the fall in the relative price of robots has to be large to trigger an endogenous adoption of robots
by firms. Looking at Equation (18) reproduced here:

mt = 1 −
(

1
α

(
ϕt

(1 − α) φt

) ν
1−ν

− 1 − α

α

) 1
ν
ℓu

t

ξℓh
t

, (37)

the reason can be two-fold. Given our chosen values for α and ν, either the marginal production
cost φt falls as much as – or more than – ϕt, or the labor reallocation triggered by the widening of
the wage premium not strong enough. Figure 3 offers an answer running an additional sensitivity
exercise in which different size of the average annual decline in robots price are simulated.

Figure 3: Automation and the size of the robots price shock.
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The kinks in labor reallocation and automation coincide, confirming the role of the second
factor. When the price of robots does not fall enough, the rise in the non-routine wage premium
is not large enough to trigger labor reallocation. Since the latter further fuels the automation
process and widens the wage premium, a feedback loop between the two phenomena arises, that
requires a big push to trigger actual automation.

The above results suggest that the falling relative price of robots is a key driver of automa-
tion. It generates displacement effects leading to a rising non-routine wage premium and pushes
workers to reallocate from the routine to the non-routine sector. Further, it brings positive pro-
ductivity effects that lower the production cost and boost output at the intensive margin. But a
decline in the price of robots also adds positive effects at the extensive margin and raises busi-
ness dynamism. The resulting welfare gains fall on non-routine workers while routine workers
experience welfare losses, that are basically proportional to the fall in the relative price of robots.
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Since routine workers reallocate towards the non-routine sector however, the aggregate welfare
gains are larger than the average of the per capita gains of both types of workers. Finally, we find
that the effects of the price of robots on automation are non-linear: only large shocks actually
trigger an endogenous automation process. So far our discussion has focused on the effects of
robot price shocks but, as already mentioned, other shocks can affect automation and/or interact
with the fall in robots price to alter the way it triggers automation.

5 Counterfactual analyzes

Let us now assess the role of other shocks in driving, amplifying or reducing the strength of
automation. To do so, we simulate counterfactual trajectories of our model shutting down each
shock in turn. We start our discussion with the role of shocks affecting markups and business
dynamism, before turning to the specific roles played by labor productivity and trade cost shocks.

5.1 Markups, business dynamism and automation

Markups and automation Our first counterfactual simulation is one where markups remain
constant instead of rising as observed in the data. The resulting effects are reported in Figure 4
below.

Figure 4: Dynamics – Baseline vs constant markups and entry costs.
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In models with endogenous entry and export status, markups play a dual role. On the one
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hand, higher markups distort real wages and lower output at the intensive margin, which has
large welfare costs. On the other hand, larger markups also imply higher expected profits and
facilitate firms entry and the payment of export costs. As such, higher markups may stimulate
the economy at the extensive margin, raising the number of producers and exporters. The overall
welfare balance clearly depends on the relative weight placed on the number of varieties in the
consumption bundle, the parameter controlling the extent of love for variety. Our estimation
favors a relatively small parameter ς = 0.1862 compared to the CES case (ς = 1). Unsurprisingly
then, our counterfactual simulation with constant markups displays massive positive effects com-
pared to the baseline. With constant markups, output growth would have been between 1% and
2% larger every year. Driven by all the other shocks, our simulation also suggests large addi-
tional gains through enhanced automation. Since the productivity gains from automation and
labor productivity are not absorbed by rising markups, production costs further fall, which rein-
forces the automation process. The proportion of automated tasks would have risen much faster
and reached almost 70% – against 35% in the baseline, labor reallocation would have been much
stronger, which is reflected in a much larger counterfactual increase in the non-routine wage
premium and non-routine wage growth. In the mean time, the wage of routine workers would
have remained unaffected, since the latter is determined by ϕt and ψt, which are both unchanged
in this counterfactual scenario. The larger displacement and productivity effects would also have
resulted in much larger welfare gains for non-routine workers, and in larger aggregate gains
since labor reallocation would have further reduced the proportion of routine workers. Last, had
markups not risen as in the baseline case, exporting would have become a bit less interesting
– markups not only affect overall profits but also export profits – and the number of exporters
would have risen less than in the baseline case, resulting in an overall dampened trade openness
ratio.

Business dynamism and automation Figure 4 also contrasts the counterfactual trajectory re-
sulting from constant – instead of rising – entry costs. In this case business dynamism would
have risen instead of declining slowly over time. Indeed, the combined effects of the robot and la-
bor productivity shocks with rising markups would have increased firm’s entry and the number
of producers and exporters. As in the case of constant markups but with a different time profile
and magnitude, this counterfactual would have amplified the endogenous automation process,
leading to larger reallocations on the labor market and boosting output. However, because of
time-to-build in the process of firm creation, the full extent of these effects would have taken
some time to fully materialize. Regarding the magnitude of the effects, annual output growth
would have been up to one percentage point larger on average than in the baseline case, relative
non-routine labor would have increased but less than under constant markups, and the extent of
automated tasks would have reached 60%, which is above the baseline number (35%) but below
the counterfactual number obtained with constant markups (70%). Finally, as the number of ex-
porters rises along with the number of producers, trade openness would have been greater than
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in the baseline (35% against 30%). As in the case of constant markups, the dynamics of routine
wages would not have been affected, and so the negative per capita consumption growth is iden-
tical to the baseline case, just as the welfare losses experienced by routine workers. The entirety
of the additional output and productivity gains would have fallen on non-routine workers which
would have resulted in much larger welfare gains for them, and larger aggregate welfare gains
given their increased weight in the household sector compared to the baseline.

The marginal effects of induced automation The above counterfactual simulations shed light
on the impact of factors affecting firm’s environment and business dynamics in our model. Had
markups or entry costs remained constant, we find that automation – and both the associated
displacement and productivity effects – would have been much stronger for a given decline in
robots price. The size and distribution of the corresponding welfare gains and losses would have
been even more polarized, and the positive impact on U.S. growth would have been much larger.
But how much exactly remains unclear at this stage because, with endogenous automation, the
marginal effects of automation triggered by the counterfactual stability of markups and entry
costs are entangled with the positive effects of constant – instead of rising – markups and entry
costs. To single out the contribution of induced automation, we compute the same counter-
factual trajectories with an adjusted relative price of robots that yields the same final value for
automation mt as in the baseline. The difference between the counterfactual and the adjusted
counterfactual then captures the marginal effects implied by the automation induced by the ab-
sence of the shocks, and reported in Figure 5.

Figure 5 shows the marginal effects of induced automation in each case. The overall picture
is already known: enhanced automation triggers displacement effects, wage growth and welfare
gains for non-routine workers, negative wage growth and welfare losses for routine workers,
and overall aggregate welfare gains. The positive productivity effects are reflected in the positive
marginal effect on output growth, and the amplification of business dynamism translating in
more producers and more exporters. Quantitatively speaking, had markups remained constant,
automation would have been more than twice the baseline degree of automation at the end of the
period, inducing an average annual 1.3 percentage point gain in output growth and aggregate
welfare gains above 20% of consumption equivalent. Had entry costs remained constant, the
marginal effects of induced automation would have been roughly equivalent to those arising
under constant markups.

This exercise shows that, for a given path of the relative price of robots, the resulting degree
of automation can vary more than substantially, depending on how other shocks shape labor
markets, productivity or business dynamism. When automation is endogenous, negative shocks
hitting the economy not only impose welfare costs on their own but also slow down the process
of automation, and dampen the associated welfare and reallocation effects. We expect positive
shocks, investigated in the next subsection, to have opposing – i.e. accelerating – effects on the
endogenous extent of automation.
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Figure 5: Marginal effect of automation induced by counterfactuals.
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5.2 Labor productivity, trade costs and automation

Counterfactuals Let us now discuss counterfactual dynamics arising when shutting shocks
with positive effects. We start with a counterfactual that mutes positive shocks to the productivity
of labor in Figure 6.

Figure 6 reveals that the rise in labor productivity and the fall in trade costs have relatively
similar and mild consequences for automation – milder than markup and entry costs. Absent one
of these shocks, the proportion of automated tasks would have reached 30% instead of 35% in
the baseline. The rise in the relative use of non-routine labor would have been reduced, reaching
1.3 at the end of the simulation, against 1.45 in the baseline case.

Focusing more specifically on labor productivity, Figure 6 shows that wage growth would
have been much lower – and even negative – for both types of workers, resulting in large welfare
losses relative to the baseline case. With constant – instead of growing – labor productivity,
welfare losses are larger for non-routine workers than for routine workers. This suggests radically
different welfare implications in comparison of shocks to robots price. Rising labor productivity
brings welfare gains for both types and larger gains for routine workers. A declining relative
price of robots produces welfare gains for non-routine workers and losses for routine workers.
Last, rising labor productivity also has benefits in terms of business dynamism: absent this
positive trend, the entry rate would have been substantially lower, depressing the number of
producers and exporters. Regarding welfare, wage and output growth or business dynamism,
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Figure 6: Dynamics – Baseline vs constant labor productivity and trade costs.
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the counterfactual case of constant trade costs has relatively minor consequences.

Our counterfactual simulations thus highlights the positive contribution of rising productivity
and falling trade costs to the adoption of robots in production: absent these shocks, automation
– the fraction of automated tasks – and labor-market shifts would have been less marked by
a few percentage points. It also contrasts the importance of labor productivity for aggregate
welfare gains, and its key difference compared to robots price shocks, especially regarding the
distribution of welfare gains/losses.

The marginal effects of induced automation As in Section 5.1, we now single out the contri-
bution of induced automation, or, in the case of negative shocks producing lesser fractions of
automated tasks, the lack thereof. Figure 7 mirrors Figure 5 in the counterfactual cases with
constant labor productivity and trade costs. That is, we adjust the relative price of robots in each
counterfactual case – increasing the fall in the relative price of robots – so that the end-of-period
level of automation is the same as in the baseline. The difference between the counterfactual
and the adjusted counterfactual gives a sense of what would have been gained or lost through
endogenous automation if labor productivity or trade costs remained constant.

Had labor productivity or trade costs remained constant, the fraction of automated tasks
would have ended-up below the baseline value, which highlights the positive contribution of
these shocks to robots adoption. Less automation would have produced less displacement on the
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Figure 7: Marginal effect of automation induced by counterfactuals (2).
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labor market, less productivity gains, and less output growth. Labor reallocation, wage growth
and welfare losses for non-routine workers would have been dampened, and symmetrically,
wage growth would have been higher for routine workers, generating welfare gains. Business
dynamism would have been less stimulated, resulting in a lesser increase in the number of
producers and exporters, which would have contributed to less output growth. The size of the
effects are, however, potentially much smaller than those implied by the absence of markup and
entry costs shocks.

6 Conclusion

Since the 1980’s, the number of robots per thousands of industry workers has been rising very
fast and it should intuitively result in large productivity gains. However, no major productivity
improvement has been seen in TFP or GDP growth statistics. To match key trends in the U.S.
economy, among which the rise in automation, we build an open-economy model of endogenous
automation with heterogeneous firms, endogenous business creation and tradability and labor
reallocation.

We show that the decline in the relative price of robots is a key factor leading to automation,
and that it affects the economy non-linearly: given labor reallocation and its endogenous effects
on automation, the fall in the price of robots has to be large to trigger automation. Further, factors
such as rising markups, rising entry costs, rising labor productivity or declining trade costs

26



have welfare gains/costs on their own but also affect the economy, labor markets or business
dynamism through their effects on the endogenous adoption of robots by firms.

Depending on the context, the environment of firms and the other shocks affecting the econ-
omy, a given decline in robots price can lead to a very strong, moderate or small automation,
resulting in correspondingly large or small productivity gains, displacement effects on the labor
market and welfare outcomes. Our results thus highlight the fundamentally endogenous nature
of automation, and provide a tentative answer to the apparent paradox of robots: automation
and its positive effects on productivity were partly hindered by other shocks slowing the process,
among which rising markup and slowing business dynamism.
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